If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-45x-2025=0
a = 2; b = -45; c = -2025;
Δ = b2-4ac
Δ = -452-4·2·(-2025)
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-135}{2*2}=\frac{-90}{4} =-22+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+135}{2*2}=\frac{180}{4} =45 $
| x^-0.5-x=3 | | y=15,000(1.05)^23 | | 2/5x+7/3=12 | | x/5+10=-1 | | -3-(a+2)=7a+15 | | Y=x•(2x+12)+10 | | 15x^2=21x | | F(x)=x•(2x+12)+10 | | 3=3(q−13) | | 3y+28=68 | | 0.28y=7.6 | | 180=4x-32+2x+28 | | 180=6x+5x-18 | | Y-b=20 | | 0.75=9/x | | 12x-32+3=7 | | 25x+15-6=159 | | 6x+13x=156 | | 3^a-5=9^a+1 | | 7s-8=90 | | 7s-8=180 | | 12r+6=90 | | 8a+4=180 | | 11w-9=90 | | .06x+x=1500 | | -0.5^x=-0.73 | | 7.5x=1.4 | | 4(m4-3)-(m-5)=-52 | | 2+p=36 | | x-9/20=-12.42-2.x | | 30(3x-9)24=189 | | d/3-8=-12.1 |